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Interfacial density fluctuations are studied at the level of the Gaussian model of 
capillary waves by means of density functional theory. We consider nonrigid 
fluctuations and arrive at exact Triezenberg-Zwanzig-type expressions for new 
interfacial coefficients. These include a width tension, a width rigidity, and other 
coefficients linked to both shape and width distortions. We find for these coef- 
ficients magnitudes of the same orders as those of their tangential counterparts. 
The corresponding capillary-wave model describes the effect of fluctuations 
when the density is slowly varying, and the recognition of the additional quan- 
tities and their roles may help in the understanding of ellipsometric studies near 
critical points. 
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1. INTRODUCTION 

A centra l  effort in deve lop ing  a mic roscop ic  t heo ry  of  interfaces is the 
de r iva t ion  of  exact  express ions  re la t ing  the  surface tens ion  y, and  o the r  
interfacial  coefficients like the bend ing  r igidi ty x, to in tegrals  involv ing  the 
one-  and  two-par t ic le  cor re la t ion  functions.  ~) A grea t  deal  of  ou r  cu r ren t  
u n d e r s t a n d i n g  of  f luctuat ions  and  cor re la t ions  at fluid interfaces s tems 
f rom these exact  expressions.  F o r  instance,  the  capi l la ry-wave  m o d e l  of  the 
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liquid-vapor interface focuses on thermal distortions of the interface, 
represented by rigid density fluctuations that exclude local width fluctua- 
tions, and, both, the original version of this model (2-s) and a recent exten- 
sion, (6) that incorporates bending and other higher-order terms, are 
consistent with the exact Triezenberg-Zwanzig (4) expression for y and with 
its counterpart for x. (7' s) The behavior of the liquid-vapor interfacial width 
W in the limit of vanishing gravitational field mgz has been the subject of 
much scrutiny (~, 4. 5, 6) in which capillary-wave models have played a major 
role by relating the behavior of W in bulk dimension d with the scaling 
properties that the interfacial density correlations develop as g ~ 0. 

Here we argue that in order to understand with generality density fluc- 
tuations at fluid interfaces it is insufficient to consider only the costumary 
(tangential) interracial coefficients, like ~, and x, as restoring forces. We 
demonstrate that it is important to include new coefficients that define 
other restoring forces associated to deformations normal to the interface 
and to the coupling of these with the tangential modes. This is accom- 
plished by deriving an exact expression for the second order variation of 
the grand potential ~t2 of a planar interface due to a general nonrigid 
density fluctuation ~p. We derive from ~I2 Triezenberg-Zwanzig-like 
expressions for the known coefficients (albeit in local-height form described 
below) and obtain others of the same type corresponding to the new 
interfacial quantities. A physical interpretation for the latter coefficients 
is drawn out, and a density functional expression (reminiscent of that 
obtained from a capillary-wave model) for W that incorporates these 
coefficients is briefly discussed. The expression captures behavior for the 
interfacial displacement correlations, presumably conspicuous close to 
liquid-vapor criticality, that results from local width fluctuations taking 
place in interfacial regions described by slowly-varying densities. We con- 
sider too a local limit for ~t2 that corresponds to a free energy functional 
with square-gradient and square-laplacian terms, and find that the new 
coefficients are of the same order of magnitude as the traditional ones. 

2. NONRIGID INTERFACIAL DENSITY FLUCTUATIONS 

To begin we consider the fluctuation formula 

612=~- ~ drl f dr2 6p( rl) C(rl, r2) ~p(r2) (2.1) 

for a planar geometry, for which the equilibrium density and direct correla- 
tion function have the spatial dependence Po(Z) and C([R~2 ], z~, z2), 
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respectively, with coordinates r = ( R ,  z) where R is a (d-1)-dimensional 
vector. A general nonrigid density fluctuation is described by 

@(r) - p(r) - po(z) ~- - r z) p'o(Z), (2.2) 

where ~'(R, z) is interpreted as the displacement of an equilibrium equiden- 
sity plane located at z due to the fluctuation in density. A rigid fluctuation 
corresponds to a displacement function r independent of z. It is fruitful 
to expand Eq. (2.1) in terms of & = (z2-zl)/2 around a central height 
coordinate ~= (z~ + z2)/2. The result can be written in the following form ~9) 

a~=f dR f dZ 
rift, r l  

gO( n ) 

v~ Oz_ r e) 
2 
Kmn(~), (2.3) 

where 

K.m(z 7) = ( -  1 ~ ( -  1 - a~* 0 2 _ ( 2 j _ 2 n  ) Mmj(~.), (2.4) 
"= k - 0  

where 

and where 

1 1 f d &  [R[ 2m (&)2 cg(lR[ Z, 5z), Mini(e) = (2m!!) 2 2j-'~ (2.5) 

cr f, a z ) - ( k ,  T / 2 ) p ' o ( ~ - & )  C ( I R l , ~ - & , ~ . + a z ) p ' o ( ~ + & ) .  (2.6) 

The constants a~ k can be obtained from the decomposition of the integrals 

n 

O(n) 
&-F r \ a z-( :j _ 2. ) 

(2.7) 

For small j and k the decomposition can be readily carried out and we 
find, up to fourth order in derivatives of (, 

6m= f dR f d~ {Koo lr + K,o 
1 
~ v,,r 

2 

+Ko~ 

+ K~o IV~r ~ + K,,(V~r b--fi r + Ko~ 

0 

~2 
~}, (2.8) 
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with Koo = Moo + M;,  + M~2, K,o = 2(M,o + M';,), Ko, = -4(Mo,  + 2M;2), 
K2o=M2o, Kl l=- -2Ml l ,  and Ko2=8Mo2, where the primes indicate 
derivatives with respect to :~. 

3. INTERFAClAL COEFFICIENTS FOR COUPLED WIDTH AND 
SHAPE FLUCTUATIONS 

We interpret the various terms in Eq. (2.8) by noting first that the 
inverse of the first Ivon equation (~~ can be rewritten as Koo = -p~(:~) (p'(:~) 
where (p'(z) is the spatial derivative of an external potential that varies only 
in the z direction. Secondly, the quantities �89 IVR(I = and IVRCI 2 in Eq. (2.8) 
can be seen to be, respectively, the increments in area and mean curvature 
due to the fluctuation at the equidensity surface located at :~. Therefore the 
moments K~o and K2o can be identified, respectively, as the (local) surface 
tension 7T(~,) and bending rigidity I(,T(Z ) per unit length at height :~. Next, 
we recognize that the quantity (a(/af) 2 measures a relative change in the 
interfacial width at the equidensity surface :~ (the entire change due to a 
uniform dilation normal to the interface), while (a2(/a:~2) 2 provides a gauge 
for the nonuniformity of a dilation normal to the interface (measures the 
effect of distortions to the density profile that preserve width). These types 
of deformations suggest that we identify the moments Ko~ and K02, respec- 
tively, with a width tension 7~v(:?) and a width rigidity x~(:~) per unit 
length. Finally, (V2~)(02~/0Z 2) measures the coupling of nonuniform 
normal dilations with tangential changes in surface curvature. Thus, a 
tangential-normal rigidity x r~v(f) can be defined via K~. 

For the less complicated term n = 0  in Eq. (2.7), the coefficients .aJo k 
turn out to be the mean of two Kronecker delta functions and one finds 

Kmo(Zr) = ( -  1)" ~ 0~2j ) Mmy(Z), 
y=o 

so that the like terms in Eq. (2.3) can be rewritten as 

(3.1) 

f dR ~ d:~ IV ~ ((R, 3) 12 K,,0(f) 

(3,2) 

When the fluctuations considered are rigid only the above terms contribute 
to ~O, and, since in this case the integrations over R and g can be 
decoupled, we recover the known expressions that relate the external field 
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~b(z), the interfacial tension ? and the bending rigidity tc, respectively, to the 
zeroth, the second and the fourth transverse moments of the direct correla- 
tion function. That is, by considering the first three terms in Eq. (2.3) with 
n=0 ,  those with m=0 ,  1, and 2, we arrive at the usual identifications (~1,6) 
for these quantities. 

The formally exact, nonlocal, expressions given by Eqs. (2.3) to (2.8) 
can be particularized to the special case of a planar interface described by 
the local free energy functional (v) 

a [ p ]  = ]" dr{fo[p] -(lu -go) p + �89 IVpl 2 -  �88 BEp] IV2plZ}, (3.3) 

where the quantities fo, A and B, are found to be (for sufficiently short- 
ranged interactions)(~2' 7) 

f fo[p(r)] =kr{p(r)[ln(~.3p(r)) - 1 ] - ~  [p(r)]'~ dr' c(r'; p(r))}, (3.4) 

1 f A[p(r)] = ~  kT dr' Ir c(r'; p(r)) (3.5) 

and 

2 f B[p(r)] = ~  kT dr' Ir'l 4 c(r'; p(r)). (3.6) 

In the above, 2 is the de Broglie thermal length, c(r ' ;p(r)) is the direct 
correlation function of a uniform and isotropic fluid of density p(r); f0 is 
the free energy density of that uniform fluid (i.e. the reference fluid state 
changes from point to point). And A and B are the second and fourth 
moments, respectively, of the reference c(r'; p(r)). We apply the functional 
expansion given originally by Yang eta/. (~2) to the nonlocal 6g2 in Eq. (2.8) 
and find (9) 

~r(z)=A[p] \dz) -BEp] \-~z2) , 

),~v(z)=A[p] \-~z] - 3 B [ p ]  \-~-z2 ] +2~zzB[ 

(3.7) 

p] \ ~z j \-~yz2 ] , (3.8/ 

and 

1 1 (dp] 2 
. (3.9) 
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The same expressions are found by making a nonrigid density fluctuation 
directly on Eq. (3.3). Interestingly, we observe that both tensions ),rand ),~ 
are of the same order of magnitude, their leading square-gradient contribu- 
tions are equal, while the three rigidities xr(z), �89 and X~v(Z) are all 
equal too. 

4. GENERALIZED CAPILLARY-WAVE MODEL 

The quadratic form for the change in grand potential fiI2 given 
by Eq. (2.1) can be used immediately to obtain expressions for the 
height-height correlations (~(R, z~)~(R', z2)), and the same-site or mean- 
square fluctuation W 2 = ( ~(R, z) ~(R, z)), where the brackets indicate 
averages evaluated from the gaussian distribution exp(-~12). These expres- 
sions are the density functional theory counterparts of those generated by 
a capillary-wave model generalized to incorporate nonrigid fluctuations 
((R, z). Use of the definitions for cr ~, ~z) and ((R, z) into Eq. (2.1) 
and replacement of the real space integrations by summations in Fourier 
space, yield 

~I2=L2+~ ~ ~', r q, q)~'(Q, q+q)~'(-Q, q-q), (4.1) 
Q q,q 

where C~(Q, 4, q) and ~'(Q, qg) are, respectively, the Fourier transforms of 
~(IR[, ~, gz) and ((R, z,), i=  1,2, t]= (q~ + q2)/2 and q=(q~-q2)/2.  There 
are difficulties in obtaining W 2 from the inverse of ~(Q, 4, q), as it is the 
usual procedure, tr) because of the dependence on q in both c~ and ~', while 
we notice too that C~(Q, q~ +q2, q~-q2) is not diagonal in (q~, q2). There 
are two limiting situations for which these complications are circumvented. 
The first one corresponds to the restriction to rigid fluctuations, in which 
case (-(Q, qg)=(o(Q)(~qi, O and we are lead to the standard result t6) 

kT  o~ 1 (4.2) W2 =1 a- ~ ~( Q, O, 0)' 

where C~(Q, 0, 0 )=  Apmg + yQ2 + xQ4 + "", and Ap =Pt-P, ,  is the density 
difference between the coexisting phases. A second limit is that of a wide 
interfacial region due to, say, a diverging correlation length ~. In this case 
the density profile can be approximated by 

f Pt, 
po(z) = ~ ( p t +  po)/2 - ,Jpz/g, 

I 
kPv, 

z <  - ~ / 2  

-~ /2  < z < ~/2 

z > ~/2, (4.3) 
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so that the fluctuations can be taken to have the form (*(R, z )= ( (R ,  z), 
-~ /2  < z  <~/2, and zero otherwise. Then we obtain, when C(rl, r2)= 
C(Ir r -  r2 ]), 

W2 kT 1 
=-~ Z Z ~.(Q, q), 

Q q 

where ~*(Q, q) is the Fourier transform of 

(4.4) 

~r z~ - z , )  =- (kT/2)(Ap/~) C(IRI, z=-  z,)(~ap/4). 

For small q (and Q) we have 

c~,(Q, q) ~_ (Ap/~) m g  + 7TQ 2 d- )'Nq 2 "Jr K T Q  4 d- KTNQ2q 2 d- XNq 4, 

(4.5) 

(4.6) 

where the interfacial coefficients turn out independent of the local height 
~= (zt + z2)/2. If for simplicity we consider the case in which the only two 
nonvanishing coefficients are ~'r and )'N, and assume ?r=i,~v, as is found 
in Eq. (3.8) with B = 0, the expression for W 2 in Eq. (4.4) corresponds to 
that given by the ordinary capillary-wave model but for a system dimen- 
sion D=d+ 1. Therefore, when d =  3 we obtain a vanishing W in the 
absence of gravity (recall that W2~ L3c-a where L c is the capillary length) 
indicating that capillary-waves do not broaden p(z). The finite, but large 
(because ~ has been assumed to be large), interfacial width in the limit 
when L ~ oo and g ~ 0 would be given (see below) by other measures 
not based on the mean-square height fluctuation W 2. As it is known, the 
ordinary capillary-wave model provides a quantitative account of ellip- 
sometric studies of liquid-vapor interfaces away from bulk criticality where 
rigid interfacial fluctuations provide a good description, but fails when 
close to it, where simple "intrinsic" interfacial models succeed by treating 
the interface in terms only of width fluctuations. (5) We suggest that the 
density functional expressions associated to nonrigid fluctuations provide a 
comprehensive description for interfacial fluctuations, including the cross- 
over to behavior close to bulk criticality where local width fluctuations 
intensify and couple with shape distortions. 

If as assumed p(z) is the exact (or, in the capillary-wave model 
language, the already fluctuation-broadened profile) we require that the 
average (p(R, z)) of p(R, z) - p ( z - ( ( R ,  z)) with respect to the fluctua- 
tions ((R, z) reproduces p(z), that is (p(R, z ) ) ~  p(z). An expansion of 
(p(R, z))  in the powers ( [ ( (R,  z)]2"), leads, to second order, to 

1 dZp(z) 
(p(R,  z) ) = p(z) + ~ az ~ W 2, (4.7) 
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therefore we need (d2p(z)/dz 2) W 2 to be small. The requirement in 
Eq. (4.7) can be checked for the case of the ordinary capillary-wave model 
(rigid fluctuations ((R) together with C~(Q, 0, 0) = Apmg + 7Q 2 and dp(z)/dz 
= (Ap/W)exp(--z2/W2)), (4) for which we obtain 

(p(R, z))  = p(z) ----~- exp - ~ - ~  . (4.8) 

Both, in dimensions d ~< 3, when the width W diverges, and d > 3 when the 
width W vanishes in the abscence of gravity the requirement is satisfied. It 
is also interesting to compare W with another measure for the width of 
p(z), w, given by 

w2 = 1 dp(z) "~pf dzzz d z "  (4.9) 

It is easy to show that W 2~-- W2~ dx X 2 exp(--x 2) ~ W 2, Lc < oo, for the 
ordinary capillary-wave model when d ~  3. However, for the profile po(z) 
that leads to Eq. (4.4) when d =  3 we have w 2 =~2/12 > W 2. 

5. P A R R Y - B O U L T E R  E F F E C T I V E  B E N D I N G  R I G I D I T Y  

Recently, ~13) some properties of interfacial fluctuation theories have 
been explored by considering a specific type of nonrigid density fluctuation. 
An expansion of Jl2 in Fourier space equivalent to that given by Eq. (4.1) 
has been analysed for the case in which the distortions ((R, z) obey the 
particular form consisting of a rigid term (o plus a nonrigid contribution 
proportional to the laplacian of (o and linear in z, that is, ((R, z ) =  ( o ( R ) -  
(z~/2) V2(o(R). (13) For this type of fluctuation only those terms with n = 0 
and n = 1 contribute to Jg2 in Eq. (2.3), which can therefore be written, 
after performing the integration over ~, as 

Jr2 = j" dR ~' {[Vm(o(R)[ z L ~  + 2 IV"+ '(o(R)[ 2 r.(') R R * " m 0  

m 

+ [V~+Z(o(R)l 2 r(2) + IV~+Z(o(R)12 r(O)} ~ m 0  ~ m l  (5.1) 

where 

L(k)=mn f df(z~/2) k (~/2) 2" Km,(f). (5.2) 
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Since 50  above has been expressed only in terms of the rigid contribution 
(0 contained in the original nonrigid fluctuation, the coefficients L t,,,k~ 
become necessarily associated to the tangential interfacial coefficients. 
Thus, by collecting terms proportional to (V2(o) 2 we note that in Eq. (5.1) 
appear other contributions proportional to the mean curvature in addition 

r(o) We obtain an effective bending to the bending rigidity term x =~2o- 
rigidity 

,, ,- (~) + L(2)  + L(O) Kef f~-  K "1- ZL, 10 O0 O1 ' (5.3) 

which is identical to Eq. (22) of ref. 13. It should be noted that the treat- 
ment in ref. 13 given to this type of nonrigid fluctuation assumes a given 
response of the interfacial width to the curvature of the dividing surface (0- 
In contrast, our analysis here considers both width and capillary-wave 
fluctuations on the same footing and of the same order. 

6. S U M M A R Y  

In summary, by considering general nonrigid fluctuations of a planar 
interface we have derived formal sum rules for a set of interfacial coef- 
ficients in terms of the density gradient and the moments, in the transverse 
and normal directions, of the direct correlation function. These coefficients 
refer, locally across the interface, to the free energy changes due to defor- 
mations that have components tangential and normal to the plane. These 
coefficients include surface tension and bending rigidity per unit length and 
also novel quantities that refer to interfacial width extensions or contrac- 
tions and higher-order deformations of the density profile that preserve 
width. When the distortions are rigid, ((R), we recover the known expres- 
sions for the surface tension and the bending rigidity. On the other hand, 
when the distortions are purely normal, ((z), the free energy change is 
given in terms of the width coefficients. These two limiting behaviors are 
mirrored by a capillary-wave model for the ((R,z). As discussed, one 
manifestation of the physical existence of the width coefficients described 
here is the crossover from capillary-wave to pure-width fluctuation 
behavior observed in ellipsometric studies of interfaces as bulk criticality is 
approached. Other situations in which interfacial width fluctuations are 
conspicuous (and provide circumstances in which to study the new coef- 
ficients) are those of the non-critical interface at a critical end point and 
the unbinding interface at complete wetting when bulk coexistence is 
approached. As we have seen, when fluctuations are restricted to be rigid 
the known results for the interfacial tension and the bending rigidity are 
recovered, and we observed that the density functional approach leads to 
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the same results of the ordinary capillary-wave model but without need of 
the costumary reference to the "broadening" of a "bare" interface. 
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